Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer's Abeta peptides.
نویسندگان
چکیده
Nucleation-dependent protein aggregation ("seeding") and amyloid fibril-free formation of soluble SDS-resistant oligomers ("oligomerization") by hydrophobic interaction is an in vitro model thought to propagate beta-amyloid (Abeta) deposition, accumulation, and incur neurotoxicity and synaptotoxicity in Alzheimer's disease (AD), and other amyloid-associated neurodegenerative diseases. However, Abeta is a high-affinity metalloprotein that aggregates in the presence of biometals (zinc, copper, and iron), and neocortical Abeta deposition is abolished by genetic ablation of synaptic zinc in transgenic mice. We now present in vitro evidence that trace (<or=0.8 microM) levels of zinc, copper, and iron, present as common contaminants of laboratory buffers and culture media, are the actual initiators of the classic Abeta1-42-mediated seeding process and Abeta oligomerization. Replicating the experimental conditions of earlier workers, we found that the in vitro precipitation and amyloidosis of Abeta1-40 (20 microM) initiated by Abeta1-42 (2 microM) were abolished by chelation of trace metal contaminants. Further, metal chelation attenuated formation of soluble Abeta oligomers from a cell-free culture medium. These data suggest that protein self-assembly and oligomerization are not spontaneous in this system as previously thought, and that there may be an obligatory role for metal ions in initiating Abeta amyloidosis and oligomerization.
منابع مشابه
Solvent and mutation effects on the nucleation of amyloid beta-protein folding.
Experimental evidence suggests that the folding and aggregation of the amyloid beta-protein (Abeta) into oligomers is a key pathogenetic event in Alzheimer's disease. Inhibiting the pathologic folding and oligomerization of Abeta could be effective in the prevention and treatment of Alzheimer's disease. Here, using all-atom molecular dynamics simulations in explicit solvent, we probe the initia...
متن کاملBinding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different cond...
متن کامل9,10-Anthraquinone hinders beta-aggregation: how does a small molecule interfere with Abeta-peptide amyloid fibrillation?
Amyloid aggregation is linked to a number of neurodegenerative syndromes, the most prevalent one being Alzheimer's disease. In this pathology, the beta-amyloid peptides (Abeta) aggregate into oligomers, protofibrils, and fibrils and eventually into plaques, which constitute the characteristic hallmark of Alzheimer's disease. Several low-molecular-weight compounds able to impair the Abeta aggreg...
متن کاملDevelopment of a novel yeast cell-based system for studying the aggregation of Alzheimer's disease-associated Abeta peptides in vivo.
Alzheimer's disease is the most common neurodegenerative disease, affecting approximately 50% of humans by age 85. The disease process is associated with aggregation of the Abeta peptides, short 39-43 residue peptides generated through endoproteolytic cleavage of the Alzheimer's precursor protein. While the process of aggregation of purified Abeta peptides in vitro is beginning to be well under...
متن کاملLPYFDa neutralizes amyloid-beta-induced memory impairment and toxicity.
Misfolding, oligomerization, and aggregation of the amyloid-beta (Abeta) peptide is widely recognized as a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies have identified soluble Abeta oligomers as the main pathogenic agents and provided evidence that such oligomeric Abeta aggregates are neurotoxic, disrupt synaptic plasticity, and inhibit long-term potentiation. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
دوره 9 8 شماره
صفحات -
تاریخ انتشار 2004